宇宙の重元素の起源の解明に向けた 重元素原子データの構築と非平衡プラズマの研究

田中 雅臣(東北大学 理学研究科 天文学専攻)

(C) NASA

元素の起源を解明したい								2	2	速い中性子捕獲反応 (rプロセス)が必要							
1 H		ビ	ッ	グバ	『ン	,	プ	ラチ	・ナ	· 金							² He
3 Li	⁴ Be											5 B	6 	7 N	8 ()	9 F	10 Ne
11 Na	12 Ma	互	ー	中、	超	新星	爆	発				13 A	14 Si	15 P	16 S	17 C 	18 Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 NJi	2) Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	36 Kr
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	⁴² Мо	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	⁴⁷ Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba	57~71 La-Lu	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89~103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			57	58 Ce	59 Pr _	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	⁹⁰ Th	91 Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

2 /11

MT & Hotokezaka 13

「キロノバ」の物理状態

M ~ 0.01 Msun v ~ 0.1c R ~ 10¹⁴⁻¹⁵ cm

可視光+赤外線

Gamma-rays β/α particles

密度 ρ ~ 10⁻¹³ g cm⁻³ (n ~ 10⁹ cm⁻³) 温度 T ~> 5,000 K (イオン化度 中性-数階電離以上) 鉄より重い元素のみからなる

可視光・赤外線光子は 重元素と相互作用 (主に束縛遷移)

重元素の原子構造計算 => 吸収係数

加藤 太治さん、村上泉さん、坂上裕之さん (NIFS)、Gediminas Gaigalasさん (Vilnius U.)、 中村信行さん (電通大)、田沼肇さん (都立大)らとの共同研究 (MT, Kato, Gaigalas et al. 2018, ApJ, 852, 109; 2020, MNRAS, 496, 1369)

ランタノイド元素の吸収係数:とくに赤外線で大きい => 「キロノバ」は赤外線で強く輝くはず

2017年:初の中性子星合体 重力波+電磁波観測

MT et al. 2017, PASJ, 69, 102

「キロノバ」が見えた = 重元素合成の証拠 赤外線で強い = ランタノイド元素が放出された

「キロノバ」のスペクトル

<u>検証は次のステップへ</u> どの元素がどれぐらい 放出されているのか??

(1) 網羅的かつ正確な
 重元素の原子データ
 (2) 非平衡プラズマの
 モデリング
 が必要不可欠

(1) 重元素の原子データ:原子構造計算の検証 - レーザー誘起ブレークダウン分光 (1-2階電離) @電通大

(C) 中村信行さん (電通大)

- LHD (重元素のペレット溶発雲分光、3階電離以上) @NIFS
- イオンビームスパッタリング装置 @NIFS
- CoBIT @NIFS

加藤太治さん、 坂上裕之さん (NIFS)

- 電子ビームトラップ @電通大

相補的な実験データの取得 => 多角的な原子データの検証へ 最終的にはデータベース化して世界に提供したい

(2) 非平衡プラズマのモデリング

これまでの天文学の重元素プラズマの計算 = LTEを仮定

今後の重力波+電磁波観測

https://www.ligo.org/scientists/GWEMalerts.php

まとめ

● 宇宙における重元素の起源

- 中性子星合体の重力波+電磁波観測で検証可能な時代に
- 原子物理+宇宙物理の連携が鍵
- 現状ではスペクトルを読み解くことができていない
- 今後5年で、より多くの観測データが得られる
- 元素の起源の解明に向けた課題
 - 網羅的かつ正確な重元素データの構築
 => データベース化 (NIFS 原子分子データベース)
 - 重元素のみで構成された非平衡プラズマのモデリング

Appendix

原子構造計算の進展

MT, Kato, Gaigalas, Kawaguchi 2020, MNRAS, 496, 1369

重元素データ 未開拓領域:高階電離イオン

重元素データ 未開拓領域:赤外線遷移

高階電離イオンの理論計算

Banerjee, MT, Kawaguchi, Kato, Gaigalas 2020, ApJ, 901, 29; Banerjee et al. in prep.

あまりに複雑な原子構造 => 膨大なデータ(~100 GB/1イオン)

キロノバ vs 実験室プラズマ

	キロノバ@1日	LIBSプラズマ LHDペレット溶発雲
温度	~104 K (1eV)	~104 K (1eV)
電子密度	~10 ⁹ cm ⁻³	~10 ¹⁷ cm ⁻³
サイズ	~10 ¹⁵ cm	~1 cm
光学的厚さ (<i>κ</i> ~1 cm² g⁻¹)	~ 102	~ 10-5

キロノバ ρ ~ Am_p n ~ 10⁻¹³ g cm⁻³ τ~к ρ R ~ к (Am_p n) R ~ σ n R (σ ~ к Am_p ~ 10⁻²² cm²)